Knowledge Distillation (KD) has been extensively used for natural language understanding (NLU) tasks to improve a small model's (a student) generalization by transferring the knowledge from a larger model (a teacher). Although KD methods achieve state-of-the-art performance in numerous settings, they suffer from several problems limiting their performance. It is shown in the literature that the capacity gap between the teacher and the student networks can make KD ineffective. Additionally, existing KD techniques do not mitigate the noise in the teacher's output: modeling the noisy behaviour of the teacher can distract the student from learning more useful features. We propose a new KD method that addresses these problems and facilitates the training compared to previous techniques. Inspired by continuation optimization, we design a training procedure that optimizes the highly non-convex KD objective by starting with the smoothed version of this objective and making it more complex as the training proceeds. Our method (Continuation-KD) achieves state-of-the-art performance across various compact architectures on NLU (GLUE benchmark) and computer vision tasks (CIFAR-10 and CIFAR-100).
translated by 谷歌翻译
Bipedal robots have received much attention because of the variety of motion maneuvers that they can produce, and the many applications they have in various areas including rehabilitation. One of these motion maneuvers is walking. In this study, we presented a framework for the trajectory optimization of a 5-link (planar) Biped Robot using hybrid optimization. The walking is modeled with two phases of single-stance (support) phase and the collision phase. The dynamic equations of the robot in each phase are extracted by the Lagrange method. It is assumed that the robot heel strike to the ground is full plastic. The gait is optimized with a method called hybrid optimization. The objective function of this problem is considered to be the integral of torque-squared along the trajectory, and also various constraints such as zero dynamics are satisfied without any approximation. Furthermore, in a new framework, there is presented a constraint called impact invariance, which ensures the periodicity of the time-varying trajectories. On the other hand, other constraints provide better and more human-like movement.
translated by 谷歌翻译
The importance of humanoid robots in today's world is undeniable, one of the most important features of humanoid robots is the ability to maneuver in environments such as stairs that other robots can not easily cross. A suitable algorithm to generate the path for the bipedal robot to climb is very important. In this paper, an optimization-based method to generate an optimal stairway for under-actuated bipedal robots without an ankle actuator is presented. The generated paths are based on zero and non-zero dynamics of the problem, and according to the satisfaction of the zero dynamics constraint in the problem, tracking the path is possible, in other words, the problem can be dynamically feasible. The optimization method used in the problem is a gradient-based method that has a suitable number of function evaluations for computational processing. This method can also be utilized to go down the stairs.
translated by 谷歌翻译
It does not matter whether it is a job interview with Tech Giants, Wall Street firms, or a small startup; all candidates want to demonstrate their best selves or even present themselves better than they really are. Meanwhile, recruiters want to know the candidates' authentic selves and detect soft skills that prove an expert candidate would be a great fit in any company. Recruiters worldwide usually struggle to find employees with the highest level of these skills. Digital footprints can assist recruiters in this process by providing candidates' unique set of online activities, while social media delivers one of the largest digital footprints to track people. In this study, for the first time, we show that a wide range of behavioral competencies consisting of 16 in-demand soft skills can be automatically predicted from Instagram profiles based on the following lists and other quantitative features using machine learning algorithms. We also provide predictions on Big Five personality traits. Models were built based on a sample of 400 Iranian volunteer users who answered an online questionnaire and provided their Instagram usernames which allowed us to crawl the public profiles. We applied several machine learning algorithms to the uniformed data. Deep learning models mostly outperformed by demonstrating 70% and 69% average Accuracy in two-level and three-level classifications respectively. Creating a large pool of people with the highest level of soft skills, and making more accurate evaluations of job candidates is possible with the application of AI on social media user-generated data.
translated by 谷歌翻译
The classification of sleep stages plays a crucial role in understanding and diagnosing sleep pathophysiology. Sleep stage scoring relies heavily on visual inspection by an expert that is time consuming and subjective procedure. Recently, deep learning neural network approaches have been leveraged to develop a generalized automated sleep staging and account for shifts in distributions that may be caused by inherent inter/intra-subject variability, heterogeneity across datasets, and different recording environments. However, these networks ignore the connections among brain regions, and disregard the sequential connections between temporally adjacent sleep epochs. To address these issues, this work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint spatio-temporal graphs along with a bidirectional gated recurrent unit and a modified graph attention network to capture the attentive dynamics of sleep stage transitions. Evaluation on two public databases: the Montreal Archive of Sleep Studies (MASS) SS3; and the SleepEDF, which contain full night polysomnography recordings of 62 and 20 healthy subjects, respectively, demonstrates performance comparable to the state-of-the-art (Accuracy: 0.867;0.838, F1-score: 0.818;0.774 and Kappa: 0.802;0.775, on each database respectively). More importantly, the proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.
translated by 谷歌翻译
Graph Learning (GL) is at the core of inference and analysis of connections in data mining and machine learning (ML). By observing a dataset of graph signals, and considering specific assumptions, Graph Signal Processing (GSP) tools can provide practical constraints in the GL approach. One applicable constraint can infer a graph with desired frequency signatures, i.e., spectral templates. However, a severe computational burden is a challenging barrier, especially for inference from high-dimensional graph signals. To address this issue and in the case of the underlying graph having graph product structure, we propose learning product (high dimensional) graphs from product spectral templates with significantly reduced complexity rather than learning them directly from high-dimensional graph signals, which, to the best of our knowledge, has not been addressed in the related areas. In contrast to the rare current approaches, our approach can learn all types of product graphs (with more than two graphs) without knowing the type of graph products and has fewer parameters. Experimental results on both the synthetic and real-world data, i.e., brain signal analysis and multi-view object images, illustrate explainable and meaningful factor graphs supported by expert-related research, as well as outperforming the rare current restricted approaches.
translated by 谷歌翻译
通常根据历史崩溃数据来实践道路的风险评估。有时缺少有关驾驶员行为和实时交通情况的信息。在本文中,安全的路线映射(SRM)模型是一种开发道路动态风险热图的方法,可扩展在做出预测时考虑驾驶员行为。 Android应用程序旨在收集驱动程序的信息并将其上传到服务器。在服务器上,面部识别提取了驱动程序的数据,例如面部地标,凝视方向和情绪。检测到驾驶员的嗜睡和分心,并评估驾驶性能。同时,动态的流量信息由路边摄像头捕获并上传到同一服务器。采用基于纵向扫描的动脉交通视频分析来识别视频中的车辆以建立速度和轨迹概况。基于这些数据,引入了LightGBM模型,以预测接下来一两秒钟的驾驶员的冲突指数。然后,使用模糊逻辑模型合并了多个数据源,包括历史崩溃计数和预测的交通冲突指标,以计算道路细分的风险评分。使用从实际的交通交叉点和驾驶模拟平台收集的数据来说明所提出的SRM模型。预测结果表明该模型是准确的,并且增加的驱动程序行为功能将改善模型的性能。最后,为可视化目的而生成风险热图。当局可以使用动态热图来指定安全的走廊,并调度执法部门以及驱动程序,以预警和行程计划。
translated by 谷歌翻译
社区检测是网络科学中的经典问题,在各个领域都有广泛的应用。最常用的方法是设计算法,旨在最大程度地跨越网络分配到社区中的不同方式,以最大化效用函数,模块化。尽管它们的名称和设计理念,但当前的模块化最大化算法通常无法最大化模块化或保证与最佳解决方案的任何接近。我们提出了Bayan算法,该算法与现有方法不同,该算法返回网络分区,以确保最佳或靠近最佳解决方案。 Bayan算法的核心是一种分支和切割方案,该方案解决了模块化最大化问题的稀疏整数编程公式,以最佳或在一个因素内近似它。我们使用合成和真实网络分析了Bayan对22种现有算法的性能。通过广泛的实验,我们不仅在最大化模块化方面展示了Bayan的独特能力,而且更重要的是在准确检索地面真实群落方面。 Bayan的比较性能水平在数据(图)生成过程中噪声量的变化上保持稳定。 Bayan作为确切的模块化最大化算法的性能也揭示了在社区准确检索中最大模块化分区的理论能力限制。总体而言,我们的分析指出,通过精确(近似)最大化的网络中的模块化(近似$ \ sim10^3 $边缘(和较大的网络)),BAYAN是对社区进行方法基础检测的合适选择。图形优化和整数编程的前瞻性进步可以进一步推动这些限制。
translated by 谷歌翻译
计算机视觉技术可以帮助自动化或部分自动化口面损伤的临床检查,以提供准确和客观的评估。为了开发此类自动化系统,我们评估了两种在口面评估视频中检测和时间分段(分析)重复的方法。从多伦多神经曲面数据集获得了患有肌萎缩性侧索硬化症(ALS)和健康对照(HC)个体的参与者的录制视频。检查了两种重复检测和解析方法:一种基于轨迹地标的工程特征和上嘴唇和下唇的朱红色 - 二连交界之间的距离(基线分析)的峰值检测(基线分析),另一种是使用预训练的变压器 - 基于repnet的基于深度学习模型(Dwibedi等,2020),该模型自动检测周期性,并在视频数据中解析周期性和半周期重复。在对两项口面评估任务的实验评估中 - 重复最大的口腔张开(打开)并重复“购买Bobby a Puppy”(BBP)(BBP) - repnet提供了比基于具有里程碑意义的方法更好的解析,并通过较高的平均相交量化的方法来量化。联合(IOU)关于地面真理手动解析。使用Repnet自动解析还根据BBP重复的持续时间清楚地分离了HC和ALS参与者,而基于里程碑的方法则不能。
translated by 谷歌翻译
通信网络中的时间延迟是通过边缘部署机器人的主要关注点之一。本文提出了一个多阶段的非线性模型预测控制(NMPC),该控制能够处理不同的网络引起的时间延迟,以建立控制框架,以确保无碰撞的无碰撞微型航空车(MAVS)导航。这项研究介绍了一种新颖的方法,该方法通过与现有的典型多阶段NMPC相反的离散化场景树来考虑不同的采样时间,在这种情况下,系统不确定性是由场景树建模的。此外,该方法根据通信链接中时间延迟的概率考虑了多阶段NMPC方案的自适应权重。由于多阶段NMPC,获得的最佳控制动作对于多个采样时间有效。最后,在各种测试和不同的模拟环境中证明了所提出的新型控制框架的总体有效性。
translated by 谷歌翻译